Autocommuting probability of a finite group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Probability of Generating a Finite Group

Let G be a finite group, and let φk(G) be the probability that k random group elements generate G. Denote by θ(G) the smallest k such that φk(G) > 1/e. In this paper we analyze quantity θ(G) for different classes of groups. We prove that θ(G) ≤ κ(G)+ 1 when G is nilpotent and κ(G) is the minimal number of generators of G. When G is solvable we show that θ(G) ≤ 3.25κ(G) + 107. We also show that ...

متن کامل

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

on the probability of being a 2-engel group

‎let $g$ be a finite group and $d_2(g)$ denotes the probability ‎that $[x,y,y]=1$ for randomly chosen elements $x,y$ of $g$‎. ‎we ‎will obtain lower and upper bounds for $d_2(g)$ in the case where ‎the sets $e_g(x)={yin g:[y,x,x]=1}$ are subgroups of $g$ for ‎all $xin g$‎. ‎also the given examples illustrate that all the ‎bounds are sharp.

متن کامل

On the planarity of a graph related to the join of subgroups of a finite group

‎Let $G$ be a finite group which is not a cyclic $p$-group‎, ‎$p$ a prime number‎. ‎We define an undirected simple graph $Delta(G)$ whose‎ ‎vertices are the proper subgroups of $G$, which are not contained in the‎ ‎Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge‎ ‎if and only if $G=langle H‎ , ‎Krangle$‎. ‎In this paper we classify finite groups with planar graph‎. ‎...

متن کامل

on the probability of being a $2$-engel group

‎let $g$ be a finite group and $d_2(g)$ denotes the probability‎ ‎that $[x,y,y]=1$ for randomly chosen elements $x,y$ of $g$‎. ‎we‎ ‎will obtain lower and upper bounds for $d_2(g)$ in the case where‎ ‎the sets $e_g(x)={yin g:[y,x,x]=1}$ are subgroups of $g$ for‎ ‎all $xin g$‎. ‎also the given examples illustrate that all the‎ ‎bounds are sharp‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2017

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2017.1332201